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SUMMARY 

The flow over a flat plate delta wing at incidence and in sideslip is studied using vortex lattice models based 
on streamwise penelling. For the attached flow problem the effect of sideslip is simulated by modifying the 
standard vortex lattice model for zero sideslip by aligning the trailing vortices aft of the wing along the 
resultant flow direction. For the separated flow problem a non-linear vortex lattice model is developed for 
both zero and non-zero sideslip angles in which the shape and position of the leading edge separation 
vortices are calculated by an iterative procedure starting from an assumed initial shape. The theoretical 
values are compared with available theoretical and experimental results. 
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1. INTRODUCTION 

The flow over a flat plate delta wing at moderate-to-high angle of attack has been studied 
extensively. Early attempts1 - 4  were based on the assumption of slender wing theory. Fully three- 
dimensional techniques based on the vortex lattice concept were later de~e loped .~  - In addition 
to the standard vortex lattice, these methods use a number of non-intersecting vortex lines to 
represent the wake generated by the leading edge, tip and trailing edge separation. An iterative 
procedure is used to determine the position of these lines from assumed initial values. A fairly 
comprehensive method has been developed'. by the Boeing Aircraft Company. The method is 
based on a higher-order formulation in which the wing, the rolled-up vortex sheet and the wake 
are represented by quadratic doublet and linear source distributions. The strength of the 
singularity distribution as well as the shape and position of the vortex sheet are computed 
iteratively. 

The vortex lattice method is one of the currently used numerical methods for potential flow 
calculation. However, a variety of other methods have been developed to study the flow over a 
flat plate delta wing, e.g. the multi-vortex model," the leading edge suction analogy," the slender 
body panel method," the hybrid method13 and the vortex particle method.14 A review of the 
various methods is presented in Reference 15. 

For a sideslipping flat plate delta wing, Pullin16 and Jones17 have developed methods within 
the framework of the slender wing assumption. Pullin's rnethodl6 is based on an integro- 
differential equation formulation due to Legendre.' The model developed by Jones' can be 
considered to be an extension of Smith's theory4 when the wing is in sideslip. The method uses a 
different conformal transformation suitable for the asymmetric case. 
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The availability of numerical methods for the asymmetric case is not so common and there is a 
need to assess how far the numerical models developed for the symmetric case can be extended to 
the asymmetric case. Katz18 developed a method for a delta wing in sideslip using an unsteady 
vortex lattice model. Starting with a solution at time t = 0, the vortex sheets emanating from the 
leading edge and subsequent roll-up are calculated by releasing vortex segments at each time 
interval At. Results have also been obtained with this model for a wing in constant roll and a wing 
displaying coning motion. 

The various vortex lattice models developed for calculating attached and separated flow about 
delta wings use a variety of discretization schemes (Figure 1). Rectangular panelling is used by 
Kandil et d7 and Katz,I8 while in the hybrid method of Jepps13 conical panelling is used. 
Streamwise panelling is used by Javed and Hancocklg for a variety of wing configurations in 
attached flow. 

Among the different discretization schemes, conical panelling is restricted to delta planforms, 
whereas rectangular panelling is more flexible and is used by Kandil et d7 for rectangular, delta 
and untapered swept configurations. Perhaps the most versatile discretization scheme uses 
streamwise panelling (Figure 1). The main advantage of such panelling is the easy representation 
of arbitrary planform shapes. 

In this paper, attached and separated flow models based on the vortex lattice concept using 
streamwise panelling have been developed to study the flow over flat plate delta wings at 
incidence and in sideslip. 

2. DESCRIPTION OF FLOW MODEL 

2.1. Attached f low model 

When the flow is attached, a planar vortex lattice model is used. In this model the wing chordal 
surface plane Z = 0 is divided into M chordwise and N spanwise panels as shown in Figure 2. 
Each panel is represented by a horseshoe vortex of constant strength, which varies from panel to 
panel. This model with sideslip involves a modification so that the trailing vortices in each panel 
aft of the trailing edge are taken along the resultant flow direction rather than along the chordal 
direction. The collocation points are taken to be the three-quarters-panel chordwise position for 
both symmetric and sideslip cases. 

Rectangular panelling Conical panelling Streamwise panelling 

Figure 1. Various discretized models 
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Asymmetric vortex pattern Vortex pattern on each panel 

Figure 2. Attached flow model for wing in sideslip 

The problem is to determine the strengths of the horseshoe vortices, Ari, i = 1, M x N .  This is 
done by satisfying the boundary condition of zero normal flow at all collocation points, which 
results in a system of simultaneous linear algebraic equations. 

In general matrix form, 

CAjiI { A r i }  = { Wj} 7 (1) 

where 

- U,ct + U,br for the port wing, 
- U,ci - U,flI‘ for the starboard wing, 

Aji is the influence coefficient matrix, U ~ is the onset flow speed, f l  is the angle of sideslip and is 
the wing dihedral. 

In the asymmetric case, both the ‘bound’ and ‘trailing’ vortices on the wing sustain lift force 
since there is a component of free stream resultant velocity normal to both. There is no lift on the 
trailing vortices aft of the wing because they are in the direction of the resultant free stream. 

Once the system of linear algebraic equations, equation (l), has been solved to give the 
unknown horseshoe vortex strengths (Ari, i = 1, N) ,  the normal force on each panel can be 
computed by adding the load carried by the bound and the two trailing vortices as shown in 
Reference 19. The load carried by any vortex segment is given by 

(3) 

where V, is the local velocity at the midpoint of the vortex segment and 161 is the length of the 
vortex segment. In the planar vortex lattice model, V, is approximated as 

(4) 

AF = pV, x AT6, 

V, = U,i - pU,j + U , a k  

and 6 is given by 

6 = 6xi + 6 y j .  ( 5 )  
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The total normal force on each panel can be computed from equation (3) as 

AFZ = PUmArc(Y2 - Y1)  + P(x2 - X I 1 1  - PPUmAW3 - x1) + PPu,Ar(x, - xz), (6) 

where (xl ,  yl), (x2, yz), (x3, y3) and (x4, y4) are the four corner points of each panel (Figure 2). 
The resulting lift coefficient can be calculated by numerical integration as 

where S is the wing area. 

integration. l 9  

The pitching and rolling moment coefficients can be calculated similarly by numerical 

2.2. Separated flow model 

In this model a non-planar vortex lattice model is employed, i.e. the lattice divides the lifting 
surface into panels which are generally non-planar. The basic difference in vortex pattern between 
this model and the attached flow model is in the formation of free vortex sheets representing the 
wakes adjoining the sharp edges where separation occurs. To simulate separation along sharp 
edges, for each of the N leading edge panels, one of the trailing vortices (the left one for port panels 
and the right one for starboard panels) is suppressed; instead of taking it downwards to the 
trailing edge and then to infinity downstream, it is taken upwards until it meets the leading edge 
and is then continued into the fluid to form a free vortex line (Figure 3). Each of these vortex lines 
is composed of a series of straight line segments, except for the last segment which extends semi- 
infinitely downstream. The direction of any finite segment is unknown and is determined as a part 
of the solution, but the final semi-infinite segment is aligned with the free stream direction. 

The problem considered here involves the strengths of the vortices (Ari)  and the direction 
cosines of the free vortex segments as the basic unknowns. In the present numerical study these 
unknowns are obtained by simultaneously satisfying the requirements that 

(a) the normal component of the velocity is zero at each control point and 
(b) each vortex segment except the final semi-infinite one in each line of the wake is force-free. 

Since the strengths and positions of the free vortices are both unknowns, an iterative procedure 
is set up for the solution. To start with, the initial direction of the free vortex segments is taken as 
the mean flow direction as argued by Kuchemann,20 i.e. at an angle a/2 to the main stream. With 
this prescribed wake shape, the unknown strengths A r i  are obtained by satisfying the flow 
tangency condition at all collocation points. The set of linear algebraic equations can be written 
as 

where 

- U ,  sin CI cos 
- U ,  sin a cos 

+ U ,  cos CI sin j sin 
- U ,  cos a sin p sin r 

for the port wing, 
for the starboard wing. wj={ (9) 

The subsequent iterative procedure involves the following steps. 

(i) With each vortex strength known ( A P - l ) ,  where n is the current iteration number), each 
finite wake segment is aligned with the computed velocity at its midpoint, starting at the 
separation points. In adjusting the downstream endpoint of each segment in this way, an 
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Schematic of leading edge separation vortices 

Vortex pattern on port 
leading edge panel 

Vortex pattern on starboard 
leading edge panel 

Ynrtex pattern 
OR other panel 

Figure 3. Separated flow model for wing in sideslip 

inner iteration is necessary to repeat the process since the final positions of the segment 
midpoints do not coincide with the positions when the velocities were calculated at them. In 
the present algorithm, as argued by Maskew,” in computing the velocity at the midpoint of 
a finite segment, the influence of the entire vortex line on which that segment lies is ignored, 
rather than just that of the local segment. 

(ii) With the wake fixed in the new position, the influence coefficient matrix Bji is recalculated 
and new vortex strengths are redetermined from the flow tangency condition. 

The iterative loop is repeated until convergence is achieved. Once the final vortex strengths are 
known, the loading on a single panel can be obtained from equation (3) as before. However, in the 
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non-planar vortex lattice mode, V, and 6 are given by 

V, = U,cosacosj?i - U,cosa sinj?j + U,sinak + ui  + u j  + wk, (10) 

(1 1) 6 = 6xi+6yj  + dzk,  

where u, 0 and w are the perturbation velocity components. The load carried by each 'bound' 
vortex segment in each panel can be obtainedz2 from equation (3): 

AFx = p U , A T [ -  U,cosa sinp + u)6z - (U,sina + w)dy], 

AF, = pU,Ar[(U,sina + w)dx - (U,cosacosp + u)dz], 

AFz = pU,AT[(U,cosacosj?+ u)dy + (U,cosa sinp - u)dx]. 

(12) 

(13) 

(14) 

The above expressions can be used for calculating the load due to the trailing vortices on the 
wing. In spanwise panelling, the length of the trailing vortex in each panel is taken as extending 
from the quarter-chord point of the panel to the quarter-chord point of the adjacent panel in the 
same chordwise strip, and the perturbation velocity components (u, u, w) are calculated at the 
midpoint of this length. It can be noted here that for the trailing vortices, 6y = 6z = 0. 

Once the total load on each panel has been computed, the resulting lift coefficient can be 
calculated by numerical integration as 

M X N  

C ,  = 1 (AF,cosa - AF,sina COSB + AFysina sinfi)/$p U:S. (1 5 )  
i =  1 

The pitching and rolling moment coefficients can be computed by numerical integration.22 

3. COMPUTATIONAL DETAILS 

Two computer programs have been developed in FORTRAN IV for attached and separated flow 
models. To make the programs applicable for both zero and non-zero angle of sideslip, the 
complete wing surface is discretized and the condition of symmetry is not imposed. For the 
attached flow model, increasing the number of panels leads to increased accuracy and an 
optimum vortex lattice of 8 x 12 is used for the entire lifting surface. For the separated flow 
model, a restriction on the number of spanwise divisions is imposed by A l m ~ s n i n o ~ ~  to prevent 
the generation of exaggerated induced velocities on the midpoint of a free vortex segment owing to 
the influence of the vortex segment next to it. In the present approach the same criterion is used 
and an optimum lattice of 8 x 8 is adopted in this case. With the lattice of 8 x 8 the convergence 
in the iterative loop is usually fast. The iteration is terminated when the change in normal force is 
below 2%. This accuracy is usually achieved within nine iterations for all configurations studied. 
Results are obtained on the Horizon 111 minicomputer. 

4. RESULTS AND DISCUSSION 

The results obtained by the present numerical models for both attached and separated flows are 
shown in Figures 4-6 for a delta wing of aspect ratio 1.0. In Figure 4 the normal force coefficient 
is shown as a function of the angle of attack. The results obtained for the symmetric case are 
compared with the Mook and Maddox solution5 and the experimental data of P e ~ k h a m . ~ ~  To 
illustrate the effect of flow separation, the attached flow results are also plotted in the same figure. 
The predicted values of lift are identical up to about 5" incidence; beyond this the difference 
becomes significant, indicating the effect of leading edge separation. 
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Figure 4. Variation of normal force with angle of attack 
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Figure 5. Variation of position of centre of pressure with angle of attack 

The results obtained for the asymmetric case when the wing is in sideslip are also shown in 
Figure 4. These results indicate that the variation in normal force due to sideslip is negligible for 
both attached and separated flow cases. 

The position of the centre of pressure is plotted as a function of the angle of attack in Figure 5. 
The comparison with experimental valuesz4* 2 5  is not satisfactory except at smaller angles of 
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Separated flow theory 
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Figure 6. Variation of lateral stability derivative with angle of attack 

attack. This is possibly due to the fact that the pitching moment characteristics are more sensitive 
to wing panelling than are the lift characteristics, and a better agreement may perhaps be 
obtained with proper panelling. However, the difference between the attached and separated flow 
solutions appears to be small. 

The separated flow solution for the asymmetric case shows a significant change in position of 
the centre of pressure compared to the symmetric case. The centre of pressure appears to move 
towards the trailing edge with increasing sideslip angle. 

The variation of the rolling moment I ,  (= dC,/dfl, with p based on k 5 " )  with the angle of 
attack ct is shown in Figure 6. The agreement of the separated flow solution with the experimental 
data26 is reasonably good except at very high angle of attack. The discrepancy at high angle of 
attack is presumably due to bubble-type flow separation from the wing leading to stall, the effect 
of which is not taken into account in the theoretical model. 

The solutions obtained by the attached flow theory, also shown in Figure 6, compare well with 
the experimental results up to about ct = 20". The rolling moment is characterized by the 
difference in load on the two wings, and the simple attached flow theory can evidently calculate 
this difference in the two wings loads despite its inability to calculate individual wing loads 
accurately at moderate-to-high angle of attack. 

The variation of rolling moment with sideslip angle fl is presented in Figure 7 for a delta wing of 
aspect ratio 071, for which experimental values are a~ai lable .~ '  The solutions obtained by Jones' 
theory,' which depend on two parameters a/y and ply (where y is the wing half-apex angle), are 
also shown in the figure. The solutions obtained by the separated flow theory agree well with the 
experimental results. The discrepancy of the solution with Jones' theory is small and is perhaps 
attributable to the fact that Jones' theory17 is based on the assumption of conical flow. 

The rolling moment coefficients calculated by both the attached and separated flow theories 
are found to be approximately linear with the angle of sideslip. However, the discrepancy between 
the two solutions becomes significant at high values of /3. 
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Figure 10. Spanwise load distribution 

In order to check the applicability of the present method to other configurations, the calculated 
lift coefficients are compared with the experimental data of Kuchemann2' for delta wings of 
varying aspect ratio. The comparison for the symmetric case appears to be good (Figure 8). The 
variation of lift due to sideslip again seems to be small except for very slender delta wings of 
slenderness ratio 0.1 (i.e. aspect ratio 0.4). 

The effect of the wing dihedral on the rolling moment stability derivative is presented in 
Figure 9. Both attached and separated flow solutions show a significant increase in -1,  with 
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Figure 1 1 .  Roll-up of leading edge vortices on a delta wing (with sideslip) 

increasing dihedral even though the variation of the normal force with the dihedral is found to be 
small. 

An explanation of this feature follows from the spanwise load distributions ( cc1 /2b ,  with c the 
local chord, c, the local lift coefficient and b the wing span) shown in Figure 10. It is seen that 
compared to the zero-dihedral wing, the loading on the starboard is increased while that on the 
port is decreased for a dihedral wing. This results in an increase of - 1, for the dihedral wing even 
though the total normal force remains relatively unchanged. 

The separation of vortices from the leadng edges of a dihedral wing and the subsequent roll-up 
is obtained by using an 8 x 8 lattice for the entire wing and is shown in Figure 11. 

5. CONCLUDING REMARKS 

Attached and separated flow models have been developed for calculation of the potential flow 
about delta wings at incidence and in sideslip. The separated Row model is capable of predicting 
accurately the aerodynamic forces and moments at high incidence until bubble-type separation 
occurs. Numerical solutions obtained by the two models indicate a significant change in lift, 
particularly at moderate-to-high angle of incidence, indicating the effect of separation from sharp 
leadng edges. However, the difference in pitching and rolling moments is not so pronounced, 
particularly for small sideslip angle. 

Numerical examples indicate that the lift is virtually independent of the angle of sideslip 
whereas the rolling moment is found to vary linearly with the angle of sideslip. The effect of 
dihedral on the lift is seen to be marginal but is quite significant for the rolling moment. 
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